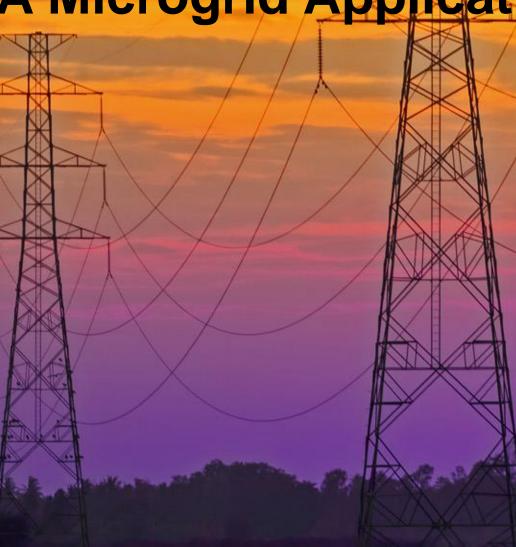
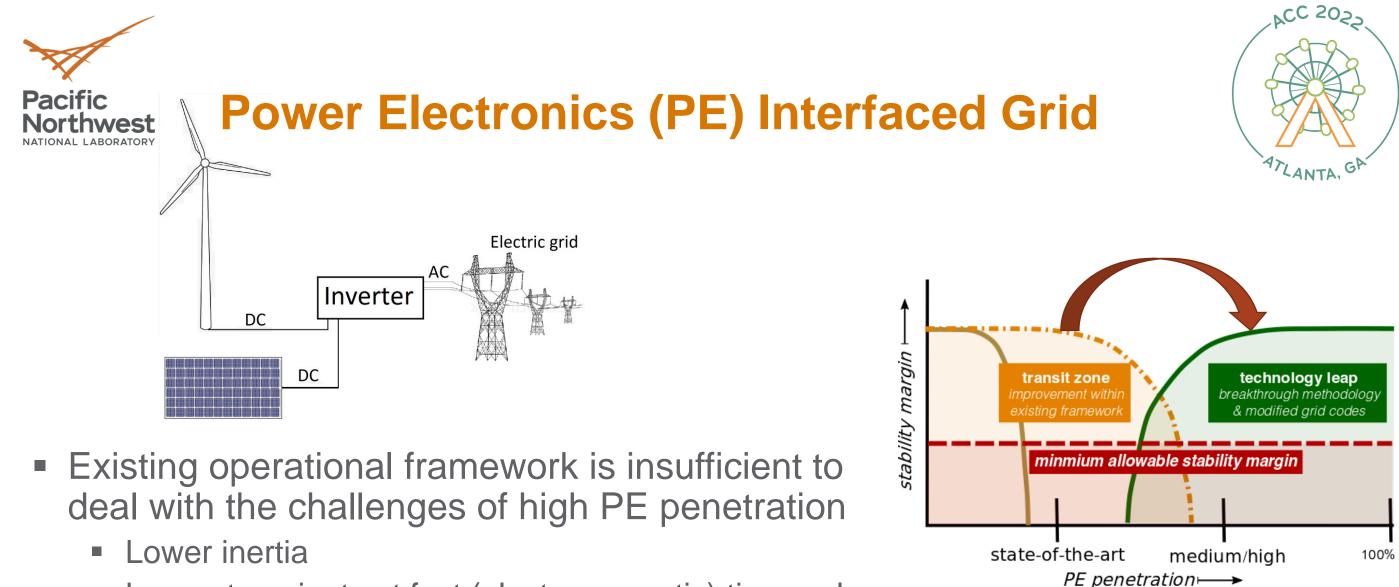


Distributed Transient Safety Verification via Robust Control Invariant Sets: A Microgrid Application

Jean-Baptiste Bouvier, Sai Pushpak Nandanoori, **Melkior Ornik and Soumya Kundu**



June 9, 2022



- - Larger transients at fast (electromagnetic) timescales
 - Higher uncertainties in power generation
 - Reduced stability and safety margins

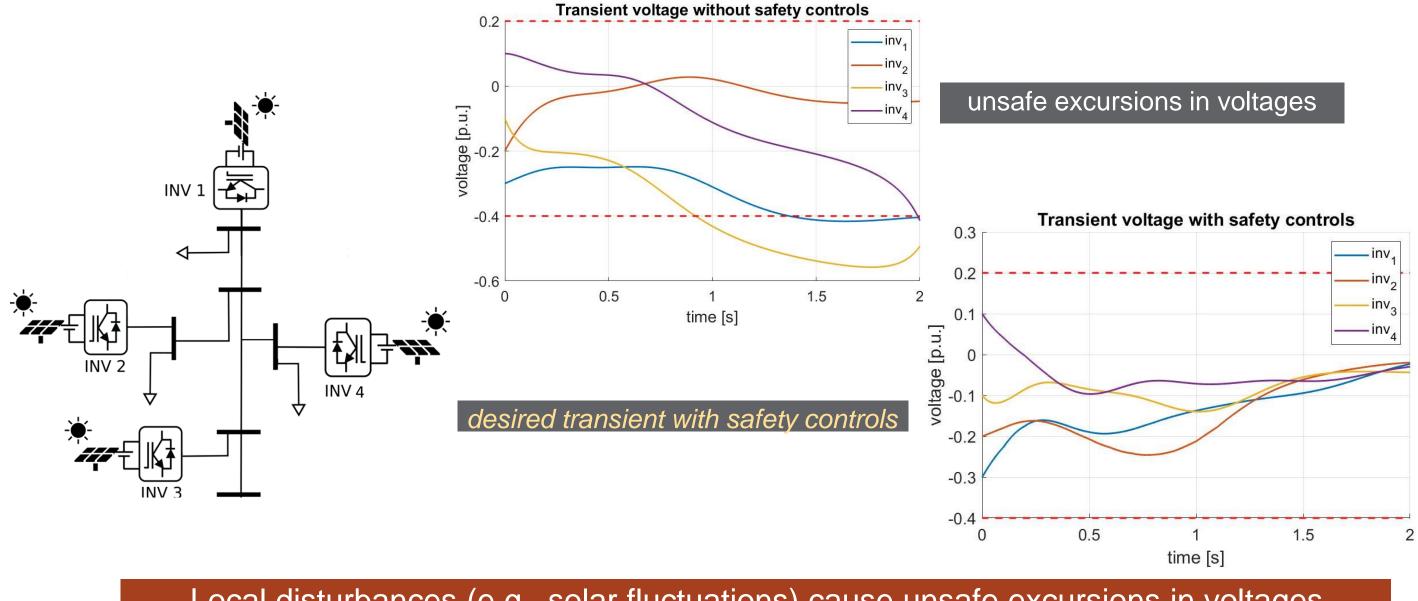
... need transformational change to achieve extreme high PE penetration (>75%)

*Source: EU MIGRATE Report

Problem: Local Transient Safety Constraints

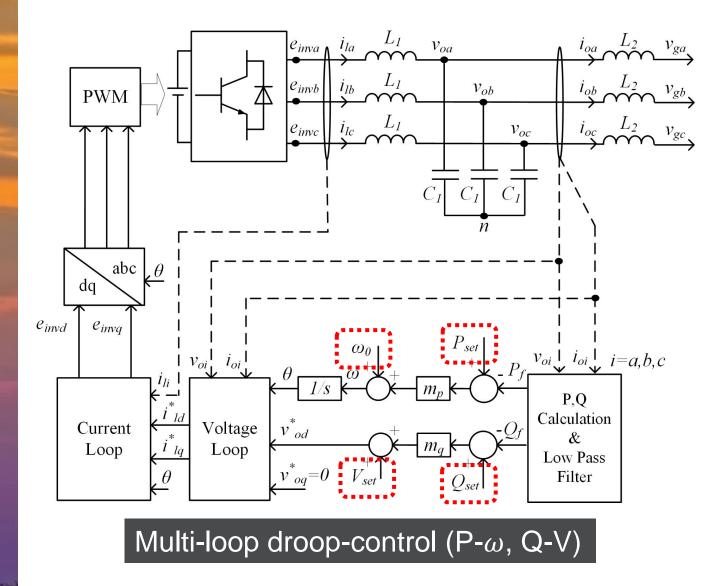
Pacific

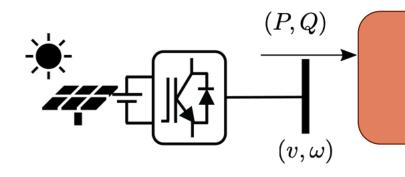
Northwest



Local disturbances (e.g., solar fluctuations) cause unsafe excursions in voltages

Emerging Technologies: Grid-Forming Inverters



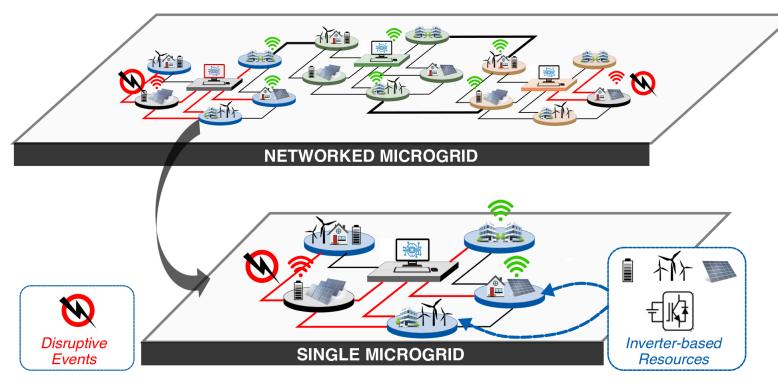


- Grid-forming inverters
 - Provides virtual inertia; acts as a voltage source; stable synchronization via inner control loops; black-start, and more ...
- Multi-loop droop-control regulates voltage and frequency by controlling power (P,Q)

$$\omega_{\text{set}} = \omega_{\text{set}}^* - \lambda_p (P - P_q)$$
 $v_{\text{set}} = v_{\text{set}}^* - \lambda_q (Q - Q_q)$

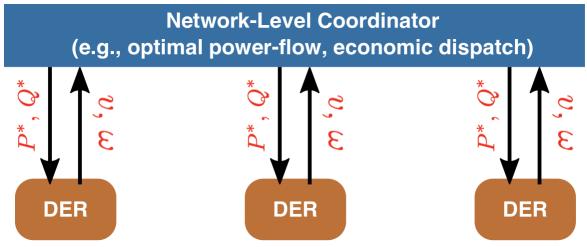
 \mathbf{P}_{set} (*P*- ω droop) (Q-V droop) \mathbf{set})

Hierarchical and Distributed Framework



- Hierarchical and distributed (DERs) over the network
- Individual resources (e.g., points to track

Example: Optimal Power-Flow - DERs receive set-points; in turn regulates voltage and frequency



operations to coordinate many distributed energy resources

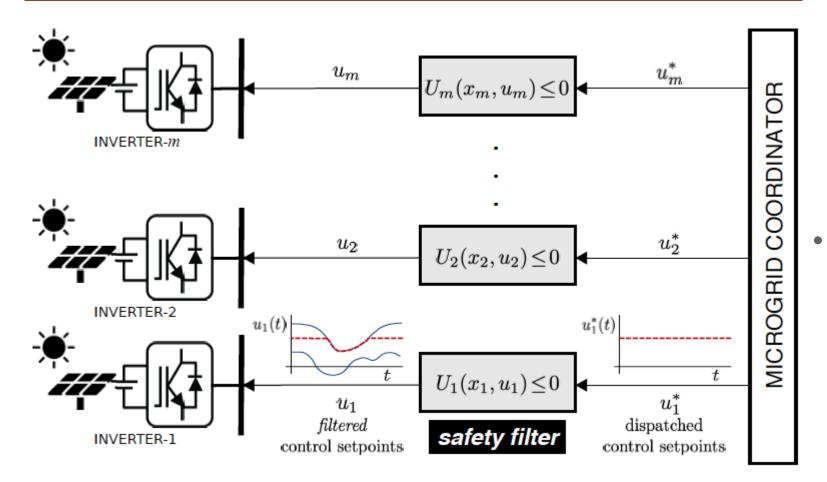
inverters) received control set-

Multi-timescales Problem

State-of-the-art operational practices in inverter-based microgrids lack the spatiotemporal granularity required to proactively prevent transient safety and stability violations which are often local and fast-evolving in nature.

Safety Filter: The Concept

Decouple network-level objectives from local transient safety constraints



7

Safety filters are deployed locally at the inverter terminals, and act as gatekeepers for allowable (safe) set-points

State-inclusive bounds on the allowable control set-points

In a robust design, guarantees transient safety constraint satisfaction under bounded uncertainties in the network

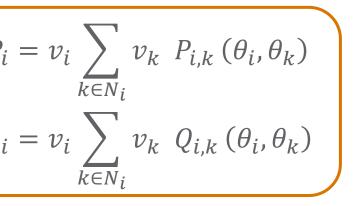
Droop-controlled inverter dynamics

Local
dynamics
$$\begin{aligned} & \dot{\theta}_i = \omega_i \\ \tau_i \dot{\omega}_i = -\omega_i + \lambda_i^p (P_i^0 + u_i^p - P_i) \\ \tau_i \dot{\nu}_i = \nu_i^0 - \nu_i + \lambda_i^q (Q_i^0 + u_i^q - Q_i) \end{aligned} \qquad \begin{bmatrix} P_i \\ Q_i \end{bmatrix} \\ \textbf{Controls} \quad u_i^p \text{ and } u_i^q \end{aligned}$$

Safe sets $S_v = [v, \overline{v}]$, and $S_\omega = [\omega, \overline{\omega}]$.

Local measurements θ_i, ω_i, v_i are known, P_i and Q_i are unknown.

Problem How to maintain $v \in S_v$ and $\omega \in S_\omega$ during transients?



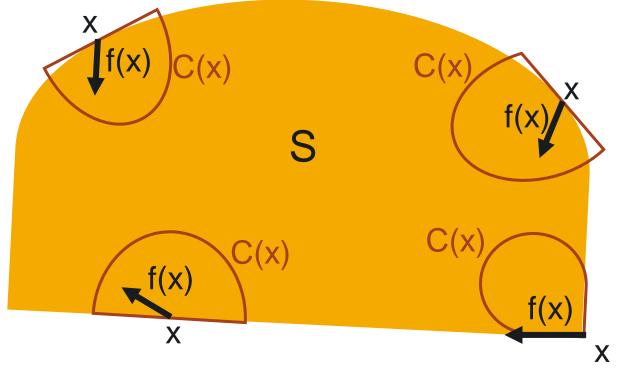
ghbor interactions

Invariant sets

S is **invariant** by $\dot{x} = f(x)$ if for all $x(0) \in S$, $x(t) \in S$ for $t \ge 0$.

Nagumo theorem

A closed set S is invariant by $\dot{x} = f(x)$ if and only if for all $x \in S$, $f(x) \in C(x)$, the Bouligand tangent cone to S at x.



S is **robust control invariant** by $\dot{x} = f(x, u, w)$ if there exists a control law u(t) such that for all $x(0) \in S$ and all $w \in W$, $x(t) \in S$ for all $t \ge 0$.

Blanchini, "Set invariance in control," Automatica 1999.

Upper and lower invariance of safe sets

 $S = [s, \overline{s}]$ is upper invariant (resp. lower invariant) for U by $\dot{x} = f(x, u, w)$ if for all $u \in U$, $w \in W$ and all $x(0) \in S$, $x(t) \leq \overline{s}$ (resp. $x(t) \geq s$) for all $t \geq 0$.

If $\dot{x} = g(x, w) + \lambda u$ with $\lambda > 0$, we define a **minimal lower control** u and a **maximal upper control** \overline{u} such that

 $u = min\{u_{low} \in U : S \text{ is lower invariant for all } u \geq u_{low}\},\$

 $\overline{u} = \max\{u_{up} \in U : S \text{ is upper invariant for all } u \leq u_{up}\}.$

$$f(\underline{s}, u_{low}, w) \qquad S \qquad S$$

 $U = [u, \overline{u}]$ is the maximal interval of **safety admissible** controls making S robust control invariant.

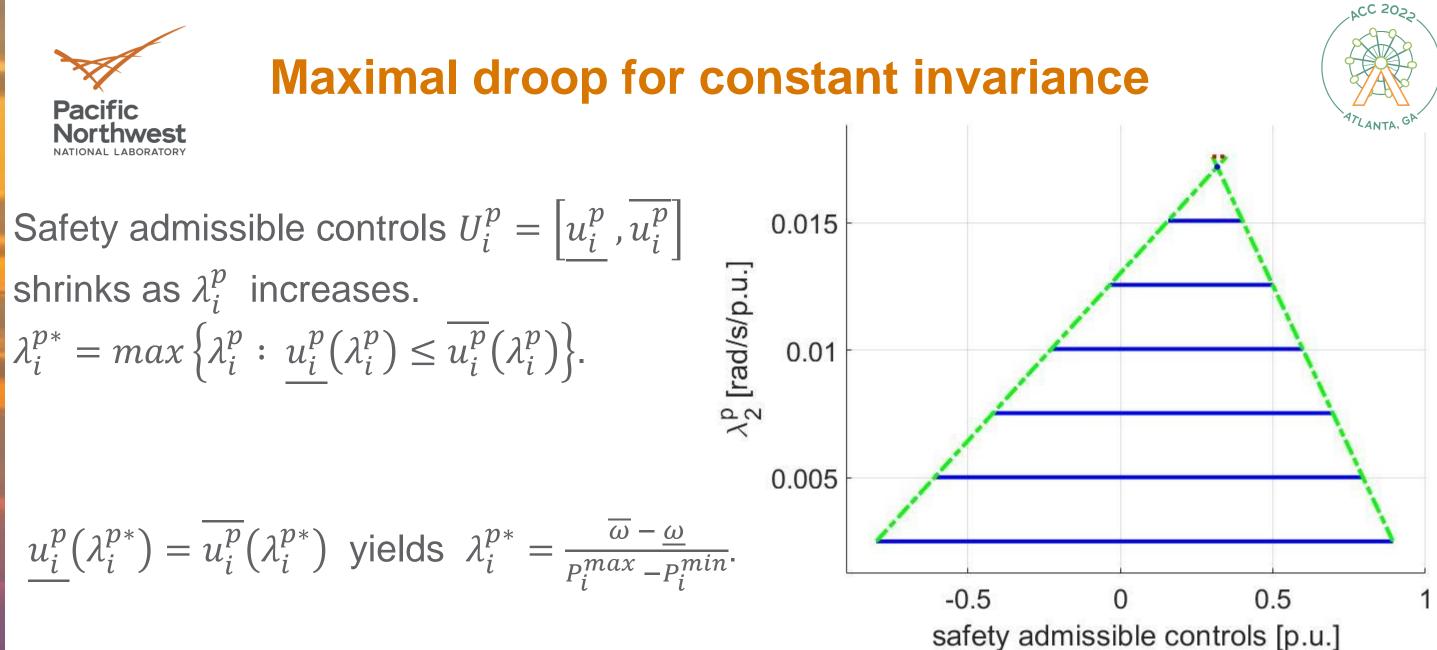
Extremal upper and lower controls

$$\overline{u_i^p} = \max_{\theta_k, v_k} \{ u_i^p : \dot{\omega}_i \le 0, \omega_i = \overline{\omega} \} = \max_{\theta_k, v_k} \frac{1}{\lambda_i^p} \overline{\omega_i} + P_i - P_i^0$$
s.t
$$\underline{u_i^p} = \min_{\theta_k, v_k} \{ u_i^p : \dot{\omega}_i \ge 0, \omega_i = \underline{\omega} \} = \min_{\theta_k, v_k} \frac{1}{\lambda_i^p} \underline{\omega_i} + P_i - P_i^0$$

Only
$$P_i$$
 depends on θ_k , v_k . Thus, let
$$\begin{aligned}
P_i^{max} &= \max_{\theta_k, v_k} \{P_i : \omega_i = \overline{\omega}\}, \\
P_i^{min} &= \min_{\theta_k, v_k} \{P_i : \omega_i = \underline{\omega}\}
\end{aligned}$$

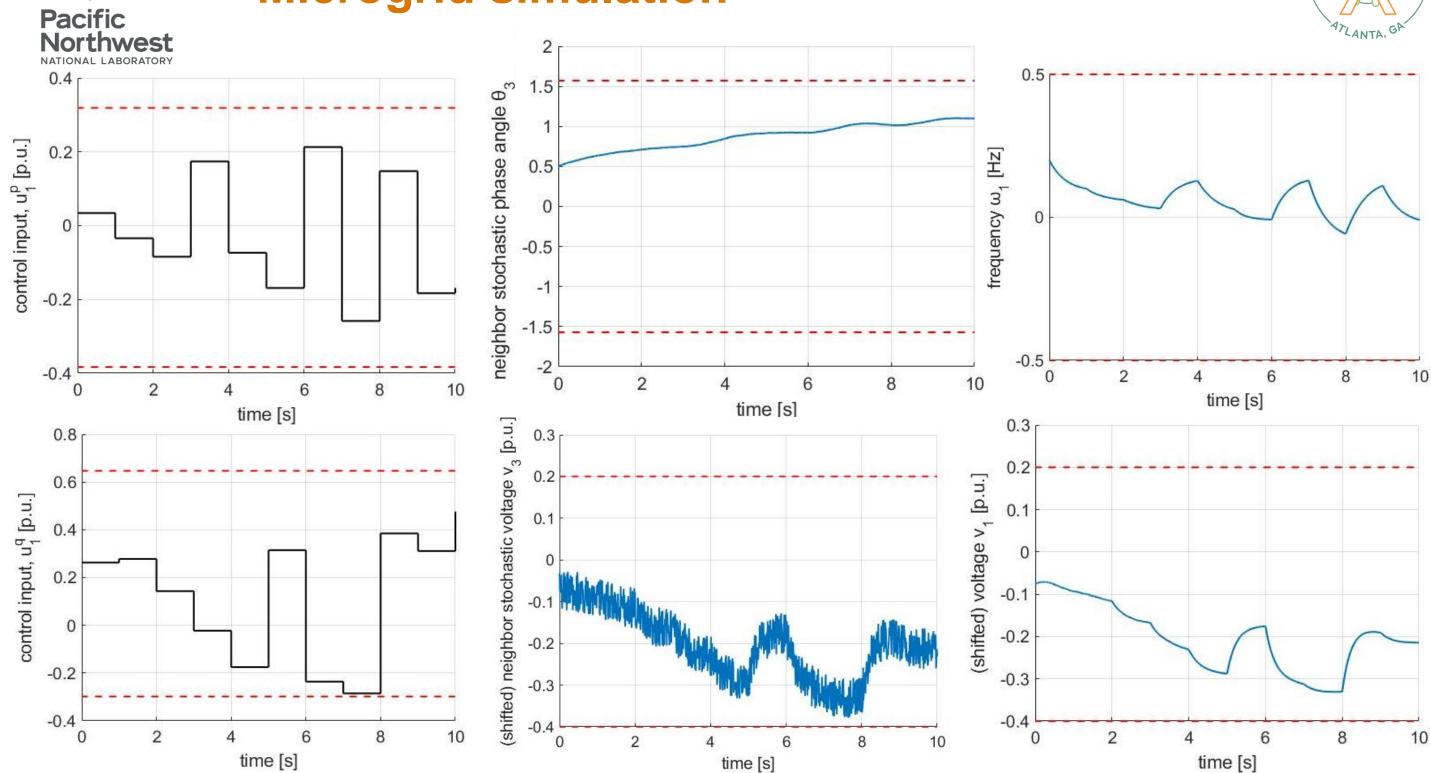
So that
$$\overline{u_i^p} = \frac{1}{\lambda_i^p}\overline{\omega} + P_i^{max} - P_i^0$$
 and $\underline{u_i^p} = \frac{1}{\lambda_i^p}\underline{\omega} + P_i^{min} - P_i^0$.

t. $\theta_k \in S_{\theta}, v_k \in S_{v}$ for all $k \in N_i$, and $S_{\theta} = [\underline{\theta}, \overline{\theta}]$.



Sum-of-Squares algorithms to calculate $P_i^{min} P_i^{max}$.

Language & SDP solver	MATLAB SeDuMi	Julia SDPA	Julia Mosek
Run-time for P_i^{min} , P_i^{max}	4295s ~1h12	343s ~ 6min	33s



Problem: how to prevent transient safety violations in inverter-based microgrids?

Solution: we relied on Nagumo's theorem to ensure robust control invariance of the frequency and voltage safe sets.

Thank you

